#2 White hole //overview



Like black holes, white holes have properties like masscharge, and angular momentum. They attract matter like any other mass, but objects falling towards a white hole would never actually reach the white hole's event horizon (though in the case of the maximally extended Schwarzschild solution, discussed below, the white hole event horizon in the past becomes a black hole event horizon in the future, so any object falling towards it will eventually reach the black hole horizon). Imagine a gravitational field, without a surface. Acceleration due to gravity is the greatest on the surface of any body. But since black holes lack a surface, acceleration due to gravity increases exponentially, but never reaches a final value as there is no considered surface in a singularity.

In quantum mechanics, the black hole emits Hawking radiation and so can come to thermal equilibrium with a gas of radiation (not compulsory). Because a thermal-equilibrium state is time-reversal-invariant, Stephen Hawking argued that the time reverse of a black hole in thermal equilibrium is again a black hole in thermal equilibrium.[5] This may imply that black holes and white holes are the same object. The Hawking radiation from an ordinary black hole is then identified with the white-hole emission. Hawking's semi-classical argument is reproduced in a quantum mechanical AdS/CFT treatment, where a black hole in anti-de Sitter space is described by a thermal gas in a gauge theory, whose time reversal is the same as itself.

Comments